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LETTER TO THE EDITOR 

Exact solution to a toy random field model 
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Institut fiir Thwretische Physik, Universitat Wiinburg, Wiirzburg, Federal Republic of 
Germany 

Received 16 April 1593 

Abstract. A toy random field model in one dimension is solved exactly by a mapping onto 
a stochastic differential equation. 

Many concepts in the physics of disordered systems like metastability, the breakdown 
of perturbation theory, or the idea of replica symmetry breaking have been tested on 
one dimensional toy models of random field problems [I-41. Thus it is useful to find 
such a model where physical quantities can be calculated exactly and in closed form. 

It is the aim of this short letter to give an exact solution for the probability 
distribution of the partition function for a specific one-dimensional model by relating 
it to a stochastic differential equation. 

We consider the partition function 

B being the inverse temperature. 

and a random function 
We assume that the total Hamiltonian is the sum of a deterministic potential V(x)  

where &) are uncorrelated Gaussian random variables, i.e. &).$(x‘) = d(x - x ’ ) .  
Thus the random potential is realized by a one-dimensional random walk, and W(x) is 
the Wiener process. 

Equation (1) is a one-dimensional toy model for an interface in a random field 
Ising ferromagnet, because up to a (possibly infinite) random additive constant we 
have 

\v(x)=f sin&-x‘)&’) dr‘. 1:- (3) 
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Figure 1. Plot of a realization of the total potential with parameters @ = p = o = l .  The 
random potential is zero at x=O.  The dashed line is the line of zero energy 

This is the energy of a domain wall located at position x under the influence of random 
fields &‘). 

In this letter I choose V(x)  to be the piecewise linear potential 

forx<O 
for x > 0. V(x)  = { ip (4) 

Hence the total Hamiltonian V(x)+uW(x) is a random walk with constant negative 
drift (figure 1). 

In this case the partition function is related to the solution of a well known 
stochastic differential equation, the so called Verhulsr equarion (51 which reads 

( d / h ) y + ~ * - / % p  - ~ E ( X ) ) Y  =O. (5) 
Here x plays the rule of the time. Assuming that this multiplicative noise process is 
interpreted in Stratonovich’s sense [6 ] ,  we can use the transformation y(x) = l / Z ( x )  to 
obtain the simpler linear equation 

(d/h)Z+P(p - uE(x))Z= 1 (6) 
which has the solution 

Obviously Z(x =0) equals the desired partition function 

h’ exp{p(p’ - uw(x’ )  + oW(0))) z= 
-- 

when we assume, that the random potential is zero at x = 0, 
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To find the distribution of Z, note that after a transient period at early times 
x+ - m , Z(x) is a stationary process. Thus the distribution function of Z(x)  does not 
depend on time and can be calculated from the Fokker-Planck equation for (5) or (6). 

This has already been done for the Verhulst equation (5) and the solution can be 
found in the literature [5]. Nevertheless let me give a simple derivation of the result. 

Introducing the free energy F ( x )  = -p-' In Z(x) =p-'  Iny(x), equation ( 5 )  is 
transformed into 

This represents the overdamped motion of a particle in the 'Toda' potential U( F) = 
,C-' exp(pF) -.uF being driven by additive noise of amplitude U. From (9) we can 
immediately read off the stationary probability density p(  F): 

p(  F) = X-' exp( -%-'U( F)) = N-' exp( -2/3- '~-*e8~ - 2 0 - ~  PF). (10) 

The normalization is given by 

where r(u) is Euler's gamma function. 
The density g(Z) for the partition function is then simply 

g(Z) =#-'pZ-'(l+yr'S4. exp( - 2/pZu2Z). (12) 

This density has along tail for 2- m (figure Z), which leads to the divergence of the 
positive moments z" for all a>2p/pc?. 

Z 

Figure?. Probability density of the partition function Z forg=p=o= 1. 
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For the sake of completeness I give the explicit expression for the disorder 
averaged free energy 

and the average position of the domain wall at temperature p-’: 
- a -  2 
(x) = - - F=- 

aP 

The brackets denote the thermal average and y(u) =(a/au) In(r(u)). 
Simplified expressions are obtained for zero temperature (p= m). Now the free 

energy equals the absolute minimum E of the potential. From (9) we get the 
exponential distribution 

exp(2pEld) forE<O 
for E>O 

together with dy)= -U’/&. 

Can we apply the present approach to nonlinear deterministic potential such as the 
quadratic V(x)ax’, a case which was frequently studied [l-4]? If we again assume 
that V(x)=m for x > O  the stochastic differential equation (5) is easily modified 
(replace p by -(d/dx)V(x) in (5) and (7)). But then the differential equation will 
contain the time x explicitely. A probability distribution for Z would have to be 
calculated from a time dependent Fokker-Planck equation, which in most cases 
cannot be solved in closed form. 

I would like to thank S Diederich for many inspiring discussions. 
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